Ornstein–Uhlenbeck processes on Lie groups

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ornstein-uhlenbeck Processes on Lie Groups

We consider Ornstein-Uhlenbeck processes (OU-processes) related to hypoelliptic diffusion on finite-dimensional Lie groups: let L be a hypoelliptic, left-invariant “sum of the squares”-operator on a Lie group G with associated Markov process X, then we construct OU-type processes by adding horizontal gradient drifts of functions U . In the natural case U(x) = − log p(1, x), where p(1, x) is the...

متن کامل

SEMINAR ON LIE GROUPS 1. Lie Groups

Example 1.3. (R,+) Example 1.4. S or T n = S × ...× S Example 1.5. Gl (n,F) ⊆ F, where F = R or C Example 1.6. E3 = isometries of R (2 connected components) Let the orthogonal group O3 < E3 be the subgroup that fixes the origin, and let the special orthogonal group SO (3) = SO3 < O3 be the orientation-preserving elements of O3. Visualizing SO (3): Let u be a vector of length l in R, correspondi...

متن کامل

Martingale Transform and Lévy Processes on Lie Groups

This paper constructs a class of martingale transforms based on Lévy processes on Lie groups. From these, a natural class of bounded linear operators on the Lp-spaces of the group (with respect to Haar measure) for 1 < p < ∞, are derived. On compact groups these operators yield Fourier multipliers (in the Peter-Weyl sense) which include the second order Riesz transforms, imaginary powers of the...

متن کامل

Brownian Processes for Monte Carlo Integration on Compact Lie Groups

This paper proposes a Monte Carlo approach for the evaluation of integrals of smooth functions defined on compact Lie groups. The approach is based on the ergodic property of Brownian processes in compact Lie groups. The paper provides an elementary proof of this property and obtains the following results. It gives the rate of almost sure convergence of time averages along with a “large deviati...

متن کامل

Jump-Diffusion Processes on Matrix Lie Groups for Bayesian Inference

A variety of engineering problems can be studied as inferences on constrained sets, Lie groups in particular. Additionally, the number of parameters to be estimated, namely the model-order, may also be unknown a-priori. We present a Bayesian approach by building a posterior probability distribution on a countable unions of Lie groups and utilizing the jump-diffusion processes to generate optima...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 2008

ISSN: 0022-1236

DOI: 10.1016/j.jfa.2008.05.004